Friction and Friction Coefficients of some Common Materials
Friction theory and friction coefficients for some common materials and
materials combinations
Sponsored Links
Frictional force can be expressed as
Ff
= μ N (1)
where
Ff
= frictional force (N, lb)
μ =
static (μs) or kinetic (μk) frictional coefficient
N =
normal force (N, lb)
For an object pulled or pushed horizontally, the normal
force - N - is
simply the weight:
N = m g
(2)
where
m
= mass of the object (kg,
slugs)
g =
acceleration of gravity (9.81 m/s2, 32 ft/s2)
Frictional Coefficients for some Common Materials and Materials
Combinations
Materials and
Material Combinations
|
Static Frictional
Coefficient - μs
|
||
Clean and Dry
Surfaces
|
Lubricated and
Greasy Surfaces
|
||
Aluminum
|
Aluminum
|
1.05 - 1.35
|
0.3
|
Aluminum-bronze
|
Steel
|
0.45
|
|
Aluminum
|
Mild Steel
|
0.61
|
|
Brake material
|
Cast iron
|
0.4
|
|
Brake material
|
Cast iron (wet)
|
0.2
|
|
Brass
|
Steel
|
0.35
|
0.19
|
Brass
|
Cast Iron
|
0.31)
|
|
Brick
|
Wood
|
0.6
|
|
Bronze
|
Steel
|
|
0.16
|
Bronze
|
Cast Iron
|
0.221)
|
|
Bronze - sintered
|
Steel
|
|
0.13
|
Cadmium
|
Cadmium
|
0.5
|
0.05
|
Cadmium
|
Mild Steel
|
0.461)
|
|
Cast Iron
|
Cast Iron
|
1.1, 0.151)
|
0.071)
|
Cast Iron
|
Oak
|
0.491)
|
0.0751
|
Cast iron
|
Mild Steel
|
0.4, 0.231)
|
0.21, 0.1331)
|
Carbon (hard)
|
Carbon
|
0.16
|
0.12 - 0.14
|
Carbon
|
Steel
|
0.14
|
0.11 - 0.14
|
Chromium
|
Chromium
|
0.41
|
0.34
|
Copper-Lead alloy
|
Steel
|
0.22
|
|
Copper
|
Copper
|
1
|
0.08
|
Copper
|
Cast Iron
|
1.05, 0.291)
|
|
Copper
|
Mild Steel
|
0.53, 0.361)
|
0.181)
|
Diamond
|
Diamond
|
0.1
|
0.05 - 0.1
|
Diamond
|
Metal
|
0.1 - 0.15
|
0.1
|
Glass
|
Glass
|
0.9 - 1.0, 0.41)
|
0.1 - 0.6,
0.09-0.121) |
Glass
|
Metal
|
0.5 - 0.7
|
0.2 - 0.3
|
Glass
|
Nickel
|
0.78
|
0.56
|
Graphite
|
Steel
|
0.1
|
0.1
|
Graphite
|
Graphite (in vacuum)
|
0.5 - 0.8
|
|
Graphite
|
Graphite
|
0.1
|
0.1
|
Iron
|
Iron
|
1.0
|
0.15 - 0.20
|
Lead
|
Cast Iron
|
0.431)
|
|
Leather
|
Oak
|
0.61, 0521
|
|
Leather
|
Metal
|
0.4
|
0.2
|
Leather
|
Wood
|
0.3 - 0.4
|
|
Leather
|
Clean Metal
|
0.6
|
|
Magnesium
|
Magnesium
|
0.6
|
0.08
|
Nickel
|
Nickel
|
0.7 - 1.1,
0.531) |
0.28, 0.121)
|
Nickel
|
Mild Steel
|
0.641)
|
0.1781)
|
Nylon
|
Nylon
|
0.15 - 0.25
|
|
Oak
|
Oak (parallel grain)
|
0.62, 0.481)
|
|
Oak
|
Oak (cross grain)
|
0.54, 0.321
|
0.0721
|
Phosphor-bronze
|
Steel
|
0.35
|
|
Platinum
|
Platinum
|
1.2
|
0.25
|
Plexiglas
|
Plexiglas
|
0.8
|
0.8
|
Plexiglas
|
Steel
|
0.4-0.5
|
0.4 - 0.5
|
Polystyrene
|
Polystyrene
|
0.5
|
0.5
|
Polystyrene
|
Steel
|
0.3-0.35
|
0.3 - 0.35
|
Polythene
|
Steel
|
0.2
|
0.2
|
Polystyrene
|
Polystyrene
|
0.5
|
0.5
|
Rubber
|
Dry Asphalt
|
0.5 - 0.81)
|
|
Rubber
|
Wet Asphalt
|
0.25 - 0.751)
|
|
Rubber
|
Dry Concrete
|
0.6 - 0.851)
|
|
Rubber
|
Wet Concrete
|
0.45 - 0.751)
|
|
Silver
|
Silver
|
1.4
|
0.55
|
Sapphire
|
Sapphire
|
0.2
|
0.2
|
Silver
|
Silver
|
1.4
|
0.55
|
Steel
|
Steel
|
0.8
|
0.16
|
Teflon
|
Teflon
|
0.04
|
0.04, 0.041)
|
Teflon
|
Steel
|
0.04
|
0.04
|
Tungsten Carbide
|
Steel
|
0.4-0.6
|
0.1 - 0.2
|
Tungsten Carbide
|
Tungsten Carbide
|
0.2 - 0.25
|
0.12
|
Tungsten Carbide
|
Copper
|
0.35
|
|
Tungsten Carbide
|
Iron
|
0.8
|
|
Teflon
|
Teflon
|
0.04
|
0.04
|
Tin
|
Cast Iron
|
0.321)
|
|
Wood
|
Clean Wood
|
0.25 - 0.5
|
|
Wood
|
Wet Wood
|
0.2
|
|
Wood
|
Clean Metal
|
0.2 - 0.6
|
|
Wood
|
Wet Metals
|
0.2
|
|
Wood
|
Concrete
|
0.62
|
|
Wood
|
Brick
|
0.6
|
|
|
Wet snow
|
0.14, 0.11)
|
|
Wood - waxed
|
Dry snow
|
0.041)
|
|
Zinc
|
Cast Iron
|
0.85, 0.211)
|
|
Zinc
|
Zinc
|
0.6
|
0.04
|
1) Kinetic frictional coefficient
Kinetic versus Static Frictional Coefficients
Kinetic frictional coefficients are used with relative
motion between objects. Static frictional coefficients are used for objects
without relative motion. Static coefficients are somewhat higher than kinetic
coefficients.
Example - Friction Force
The friction force of a 100 lb wooden crate pushed across a
concrete floor with friction coefficient of 0.62 can be calculated as:
Ff
= 0.62 100 (lb)
= 62
(lb)
·
1
lb = 0.4536 kg
Hiç yorum yok:
Yorum Gönder